Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genet Med ; 23(9): 1664-1672, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34040195

RESUMEN

PURPOSE: Prader-Willi syndrome (PWS) is a neurodevelopmental disorder with hypothalamic dysfunction due to deficiency of imprinted genes located on the 15q11-q13 chromosome. Among them, the SNORD116 gene appears critical for the expression of the PWS phenotype. We aimed to clarify the role of SNORD116 in cellular and animal models with regard to growth hormone therapy (GHT), the main approved treatment for PWS. METHODS: We collected serum and induced pluripotent stem cells (iPSCs) from GH-treated PWS patients to differentiate into dopaminergic neurons, and in parallel used a Snord116 knockout mouse model. We analyzed the expression of factors potentially linked to GH responsiveness. RESULTS: We found elevated levels of circulating IGFBP7 in naive PWS patients, with IGFBP7 levels normalizing under GHT. We found elevated IGFBP7 levels in the brains of Snord116 knockout mice and in iPSC-derived neurons from a SNORD116-deleted PWS patient. High circulating levels of IGFBP7 in PWS patients may result from both increased IGFBP7 expression and decreased IGFBP7 cleavage, by downregulation of the proconvertase PC1. CONCLUSION: SNORD116 deletion affects IGFBP7 levels, while IGFBP7 decreases under GHT in PWS patients. Modulation of the IGFBP7 level, which interacts with IGF1, has implications in the pathophysiology and management of PWS under GHT.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de Prader-Willi , Animales , Hormona del Crecimiento , Humanos , Ratones , Neuronas , Síndrome de Prader-Willi/tratamiento farmacológico , Síndrome de Prader-Willi/genética , ARN Nucleolar Pequeño
2.
Kidney Int ; 99(3): 737-749, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32750455

RESUMEN

Although a rare disease, bilateral congenital anomalies of the kidney and urinary tract (CAKUT) are the leading cause of end stage kidney disease in children. Ultrasound-based prenatal prediction of postnatal kidney survival in CAKUT pregnancies is far from accurate. To improve prediction, we conducted a prospective multicenter peptidome analysis of amniotic fluid spanning 140 evaluable fetuses with CAKUT. We identified a signature of 98 endogenous amniotic fluid peptides, mainly composed of fragments from extracellular matrix proteins and from the actin binding protein thymosin-ß4. The peptide signature predicted postnatal kidney outcome with an area under the curve of 0.96 in the holdout validation set of patients with CAKUT with definite endpoint data. Additionally, this peptide signature was validated in a geographically independent sub-cohort of 12 patients (area under the curve 1.00) and displayed high specificity in non-CAKUT pregnancies (82 and 94% in 22 healthy fetuses and in 47 fetuses with congenital cytomegalovirus infection respectively). Change in amniotic fluid thymosin-ß4 abundance was confirmed with ELISA. Knockout of thymosin-ß4 in zebrafish altered proximal and distal tubule pronephros growth suggesting a possible role of thymosin ß4 in fetal kidney development. Thus, recognition of the 98-peptide signature in amniotic fluid during diagnostic workup of prenatally detected fetuses with CAKUT can provide a long-sought evidence base for accurate management of the CAKUT disorder that is currently unavailable.


Asunto(s)
Enfermedades Renales , Sistema Urinario , Anomalías Urogenitales , Líquido Amniótico , Animales , Niño , Femenino , Humanos , Riñón/diagnóstico por imagen , Péptidos , Embarazo , Estudios Prospectivos , Anomalías Urogenitales/diagnóstico por imagen , Pez Cebra
3.
BMC Syst Biol ; 11(1): 31, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28249581

RESUMEN

BACKGROUND: Although renal fibrosis and inflammation have shown to be involved in the pathophysiology of obstructive nephropathies, molecular mechanisms underlying evolution of these processes remain undetermined. In an attempt towards improved understanding of obstructive nephropathy and improved translatability of the results to clinical practice we have developed a systems biology approach combining omics data of both human and mouse obstructive nephropathy. RESULTS: We have studied in parallel the urinary miRNome of infants with ureteropelvic junction obstruction and the kidney tissue miRNome and transcriptome of the corresponding neonatal partial unilateral ureteral obstruction (UUO) mouse model. Several hundreds of miRNAs and mRNAs displayed changed abundance during disease. Combination of miRNAs in both species and associated mRNAs let to the prioritization of five miRNAs and 35 mRNAs associated to disease. In vitro and in vivo validation identified consistent dysregulation of let-7a-5p and miR-29-3p and new potential targets, E3 ubiquitin-protein ligase (DTX4) and neuron navigator 1 (NAV1), potentially involved in fibrotic processes, in obstructive nephropathy in both human and mice that would not be identified otherwise. CONCLUSIONS: Our study is the first to correlate a mouse model of neonatal partial UUO with human UPJ obstruction in a comprehensive systems biology analysis. Our data revealed let-7a and miR-29b as molecules potentially involved in the development of fibrosis in UPJ obstruction via the control of DTX4 in both man and mice that would not be identified otherwise.


Asunto(s)
MicroARNs/genética , Terapia Molecular Dirigida , Pelvis , Biología de Sistemas , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/genética , Animales , Estudios de Casos y Controles , Línea Celular , Perfilación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Masculino , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...